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Introduction: Dynamic Discrete Choices1

We start with an single-agent models of dynamic decisions:
I Machine replacement and investment decisions: Rust (1987)
I Renewal or exit decisions: Pakes (1986)
I Inventory control: Erdem, Imai, and Keane (2003), Hendel and Nevo

(2006)
I Experience goods and bayesian learning: Erdem and Keane (1996),

Ackerberg (2003), Crawford and Shum (2005)
I Demand for durable goods: Gordon (2010), Gowrisankaran and

Rysman (2012), Lee (2013)

This lecture will focus on econometrics methods, and next lecture will
discuss mostly applications.

Next, we will discuss questions related to the dynamic of industries:
I Markov-perfect dynamic games
I Empirical model of static and dynamic games

1These lectures notes incorporate material from Victor Agguirregabiria’s graduate IO
slides at the University of Toronto.

Estimation of dynamic discrete choice models 2 / 49



Machine replacement and investment decisions

Consider a firm producing a good at N plants (indexed by i) that
operate independently.

Each plant has a machine.

Examples:
I Rust (1987): Each plant is a Madison WI bus, and Harold Zucher is

the plant operator.
I Das (1992): Consider cement plants, where the machines are cement

kiln.
I Rust and Rothwell (1995): Study the maintenance of nuclear power

plants.

Related applications: Export decisions (Das et al. (2007)),
replacement of durable goods (Adda and Cooper (2000),
Gowrisankaran and Rysman (2012)).
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Bus Replacement: Rust (1987)

Profit function at time t:

πt =
N∑
i=1

yit − rcit

where yit is the plant’s variable profit, and rcit is the replacing cost of
the machine.
Replacement and depreciation:

I Replace cost:
rcit = ait × RC (xit)

where ∂RC (x)/∂x ≥ 0 and ait = 1 if the machine is replaced. In the
application, RC (xit) = θR0 + θR1xit .

I State variable: machine age xit , choice-specific profit shock
{εit(0), εit(1)}.

I Variable profits are decreasing in the age xit of the aging, and
increasing in profit shock εit(ait):

yij = Y ((1− ait)xit , εit(ait))

where ∂Y /∂x < 0.

Estimation of dynamic discrete choice models 4 / 49



Profits and Depreciation

Variable profit: Step function

πit =

{
Y (0, εit(1))− RC (xit) If ait = 1

Y (xit , εit(0)) Otherwise.

Aging/depreciation process:

Deterministic: xit+1 = (1− ait)xit + 1

Stochastic: xit+1 = (1− ait)xit + ξt+1

Note: In Rust (1987), xit is bus mileage. It follows a random walk
process with a log-normal distribution.
Assumptions:

1 Additive separable (AS) profit shock:

Y ((1− a)x , ε(a)) = θY0 + θY1 (1− a)x + ε(a)

2 Conditional independence (CI): f (εt+1|εt , xt) = f (εt+1)
3 Aging follows is a discrete random-walk process: xit ∈ {0, 1, ...,M} and

matrix F (x ′|x , a) characterizes its controlled Markov transition process.
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Dynamic Optimization
Harold Zucher maximizes expected future profits:

V (ait |xit , εit) = E

( ∞∑
τ=0

βτπit+τ

∣∣∣xit , εit , ait
)

Recursive formulation: Bellman equation

V (a|x , ε) = Y ((1− a) · x)− RC (a · x) + ε(a)

+β
∑
x ′

Eε′
(
V (x ′, ε′)

)
F (x ′|x , a)

= v(a, x) + ε(a)

where V (x , ε) ≡ maxa∈{0,1} V (a|x , ε).
Optimal replacement decision:

a∗ =

{
1 If v(1, x)− v(0, x) = ṽ(x) > ε(0)− ε(1) = ε̃

0 Otherwise.

If {ε(0), ε(1)} are distributed according to a T1EV distribution with
unit variance:

Pr(ait = 1|xit) = exp(ṽ(xit)/(1 + exp(ṽ(xit)))

V̄ (xit) = E

(
max
ait

v(ait , xit) + εit(ait)

)
= ln

∑
a=0,1

exp(v(a, xit))

+γ
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Solution to the dynamic-programming (DP) problem

Assumptions (1) and (2) imply that we only need numerically find a
fixed-point to the “Emax” function V̄ (x) (M elements):

V̄ (x) = Eε
(

max
a

v(a, x) + ε(a)
)

= Eε

(
max
a

Π(a, x) + β
∑
x ′

V̄ (x ′)F (x ′|x , a) + ε(a)

)
= Γ(x |V̄ )

where Π(a, x) = Y ((1− a) · x)− RC (a · x), and Γ(x |V̄ ) is a
contraction mapping.

Matrix form representation using the T1EV distribution assumption:

V̄ = ln
(
exp

(
Π(0) + βF (0)V̄

)
+ exp

(
Π(1) + βF (1)V̄

))
+ γ

= Γ(V̄)

where γ is the Euler constant, F (0) and F (1) are two M ×M
conditional transition probability matrix.
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Algorithm 1: Value Function Iteration

Fixed objects:
I Payoffs (M × 1):

Π(a) = {θ0 + θx(1− a)xi − RC (a · x)}i=1,...,M for a ∈ {0, 1}

I Conditional transition probability (M ×M): F (a) for a ∈ {0, 1}

Fj,k(a) = F (xt+1 = xk |xt = xj , at = a)

I Stopping rule: η ≈ 10−14.

Value function iteration algorithm:
1 Guess initial value for V̄ 0(x). Example: Static value function

V̄0(x) = ln (exp (Π(0)) + exp (Π(1))) + γ

2 Update value function iteration k :

V̄k = ln
(
exp

(
Π(0) + βF (0)V̄k−1

)
+ exp

(
Π(1) + βF (1)V̄k−1

))
+ γ

3 Stop if ||V̄k − V̄k−1|| < η. Otherwise, repeat steps (2)-(3).
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Policy Function Representation

Define conditional choice-probability (CCP) mapping:

P(x) = Pr

(
Π(1, x) + β

∑
x ′ V̄ (x ′)F (x ′|x , 1) + ε(1)

≥ Π(0, x) + β
∑

x ′ V̄ (x ′)F (x ′|x , 0) + ε(0)

)
(1)

= exp(ṽ(x)/ (1 + exp(ṽ(x))) = (1 + exp(−ṽ(x)))−1

Where, ṽ(x) = v(1, x)− v(0, x).

At the “optimal” CCP, we can write the Emax function as follows:

V̄ P(x) = (1− P(x))

[
Π(0, x) + e(0, x) + β

∑
x ′

V̄ P(x ′)F (x ′|x , 0)

]

+P(x)

[
Π(0, x) + e(1, x) + β

∑
x ′

V̄ P(x ′)F (x ′|x , 1)

]

where e(a, x) = E (ε(a)|a∗ = a, x) is the conditional expectation ε(a).
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Policy Function Representation (continued)

If ε(a) is T1EV distributed, we can write this expectation analytically:

e(a, x) = γ − lnP(a|x).

This implicitely define the value function in terms of the CCP vector:

V̄P =
(
I − βFP

)−1
[

(1− P) ∗ (Π(0) + e(0))
+P ∗ (Π(1) + e(1))

]
(2)

where FP = (1− P) ∗ F (0) + P ∗ F (1) and ∗ is the
element-by-element multiplication operator.

Equations 1 and 2 define a fixed-point in P:

P∗ = Ψ(P∗)

where Ψ(·) is a contraction mapping.
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Algorithm 2: Policy Function Iteration

1 Guess initial value for the CCP. Example: Static choice-probability

P(x) = (1 + exp(−(Π(x |1)− Π(x |0))))−1

2 Calculate expected value function:

V̄k−1 =
(
I − βFk−1

)−1
[

(1− Pk−1) ∗
(
Π(0) + ek−1(0)

)
+Pk−1 ∗

(
Π(1) + ek−1(1)

) ]
3 Update CCP:

Pk(x) = Ψ(Pk−1(x)) =
(

1 + exp(−ṽ(x)k−1)
)−1

where ṽk−1 =
(
Π(1) + βF (1)V̄k−1

)
−
(
Π(0) + βF (0)V̄k−1

)
.

4 Stop if ||Pk − Pk−1|| < η. Otherwise, repeat steps (2)-(4)
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Value-function versus Policy-function Algorithms

Both algorithms are guaranteed to converge if β ∈ (0, 1)

Policy-function iteration algorithms converges in fewer steps than
value-function iteration.

However, each step of the policy-function algorithm is slower due to
the matrix inversion. M is typically very large (in the millions).

If M is very large, it can be faster and more accurate to find V̄ using
linear programing tools (e.g. linsolve in Matlab):

(
I − βFk−1

)
V̄k−1 =

(1− Pk−1) ∗
(
Π(0) + ek−1(0)

)
+Pk−1 ∗

(
Π(1) + ek−1(1)

)
⇔ Ay = b

Suggested algorithm:
I Start with value-function iteration if V̄k(x)− V̄k−1(x) > η1

I Switch to policy-function iteration when V̄k(x)− V̄k−1(x) < η1

I Where η1 < η (e.g. η1 = 10−2)
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Estimation: Nested fixed-point MLE

Data: Panel of choices ait and observed states xit

Parameters: Technology parameters θ = {θY0 , θY1 , θR0 , θR1},
discount factor β, and distribution of mileage shocks fx(ξit).

Initial step: If the panel is long-enough, we can estimate fx(ξ) from
the data. The estimated process can then be discretized to construct
F̂ (1) and F̂ (0).

Maximum likelihood problem:

max
θ,β

∑
i

∑
t

ait lnP(xit) + (1− ait) ln(1− P(xit))

s.t. P(xit) = Ψ(xit) ∀xit

In practice, we need two functions:
I Likelihood: Evaluate L(θ, β) given P(xit).
I Fixed-point: Routine that solves P(xit) for every guess of θ, β.
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Incorporating Unobserved Heterogeneity

Why? Relax the conditional independence assumption.

Example: Buses have heterogeneous replacement costs (K types)
I This increases the number of parameters by K (K − 1): {θ1

R0
, ..., θKR0

} +
{ω1, .., ωK−1} (probability weights).

I E.g.: discretize a parametric distribution: ln θiR0
∼ N(µ, σ2)

I This changes the MLE problem:

max
θ,β,ω

∑
i

ln

[∑
k

g(k |xi1)
∏
t

Pk(xit)
ait (1− Pk(xit))1−ait

]
s.t. Pk(xit) = Ψk(xit) ∀xit and type k

Where g(k|xi1) is the probability that bus i is type k conditional on
initial milage xi1 (i.e. initial condition problem).

I How to calculate g(k |xi1)?
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Side note: The initial condition problem
Unobserved heterogeneity creates a correlation between the initial
state (i.e. xi1 mileage) and types (Heckman 1981).
Two solutions:

I New buses: Exogenous initial assignment g(k |xi1) = ωk .
I Limiting distribution: The bus engine replacement creates a

finite-state Markov chain defined by

Fk(x ′|x) =
∑
a

Pk(a|x)F (x ′|x , a) for each type k

Under fairly general assumptions, this process generates a unique
limiting distribution:

πk(x) =
M∑
i=1

Fk(xt+1 = x |xt = xi )πk(xi )↔ πk = FT
k πk

We can use the limiting distribution to calculate the type probability
conditional on initial mileage:

g(k |xi1) =
ωkπk(xi1)∑
k′ ωk′πk′(xi1)
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Identification: Residual profit

Assumption: Parametric distribution function Fε.

Standard normalization: σε = 1.
I This means that we cannot identify the “dollar” value of replacement

costs. Only relative to variable profits.
I True in any discrete-choice problem.

When profits or output data are available, we can relax this
normalization, and estimate σε (e.g. investment and production data).
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Identification: Discount Factor

The data is summarized by the empirical hazard function:

h(x) = Pr(replacementt |milest = x)

This corresponds to the reduced form of the model:

h(x) = P(x) = Fε̃(ṽ(x))

= Fε̃

(
− (Π(1, x)− Π(0, x))
β
∑

x′ V (x ′)(F (x ′|x , 1)− F (x ′|x , 0))

)
Claim: β is not identified, unless we parametrize payoffs: Y and RC .

I If Π(x) is linear in x, then non-linearity in the observed hazard
function identifies β.

I If Π(x) is a non-parametric function, we cannot distinguish between a
non-linear myopic model (β = 0), and a forward-looking model
(β > 0).

What would identify β?
I Exclusion restriction: The model includes a state variable z that only

enters the Markov transition function (i.e. F (x ′|x , z , a)), and not the
static payoff function.
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Empirical Hazard Function
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Identification of β and search for the right specification
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Main estimation results

Estimation of dynamic discrete choice models 20 / 49



Patents as options, Pakes (1986)

This paper studies the value of patent protection: (i) what is the
stochastic process determining the value of innovations?, (ii) how
patent protection laws affect the decision to renew patens and the
distribution of returns to innovation?

The model is an example of an optimal stopping problem. The
model is setup with a finite horizon, but it does not have to be. Other
examples: retirement, firm exit decisions, technology adoption, etc.

Contributions:
I Illustrate how we can infer the implicit option value of patents (or any

other dynamic investment decision) from dynamic discrete choices (i.e.
principle of revealed preference).

I This is done without actually observing profits or revenues from
patents. Only the dynamic structure of renewal costs are needed.

I More technically, the paper is one of the firsts applications of
simulation methods in econometrics (very influential).
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Data and Institutional Details

Three countries: France, Germany and UK

Renewal date for all patents: nm,t(a) = number of surviving patents
at age a in country m from cohort t.
Regulatory environment by country/cohort:

I f : Number of automatic renewal years.
I L: Expiration date on patent
I c = {c1, ..., cT}: Deterministic renewal cost
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Country differences in drop-out probabilities
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Country differences in renewal fee schedules
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Model setup

Consider the renewal problem for patent i

Stochastic sequence of returns from patent: ri = {ri1, ..., riL}
Evolution of returns depend on:

1 initial quality level
2 arrival of substitutes innovations that depreciate the value of the patent
3 arrival of complement innovations that increase its value.

Model structural parameters (per country):
I δ measures the normal obsolescence rate
I φ and σ determines the arrival rate and magnitude of complementary

innovations
I λ determines to arrival rate of substitute innovations
I µ0 and σ0 determines the initial quality pool of innovations

Discount factor β is fixed.
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Stochastic Process

Markov process for returns:

rit+1 = τit+1 max{δrit , ξit+1}
Where, Pr(τit+1 = 0|rit , t) = exp(−λrit)

p(ξit+1|rit , t) =
1

φtσ
exp

(
−γ + ξit+1

φtσ

)
ri0 ∼ LN(µ0, σ

2
0)

or more compactly for t > 0,

f (rit+1|rit , t) =


exp(−λrit) If rit+1 = 0

Pr(ξit+1 < δrit |rit , t) If rit+1 = δrit
1
φtσ exp

(
−γ+ξit+1

φtσ

)
If rit+1 > δrit
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Optimal stopping problem

In the last year, the renewal value depends only on cL and riL:

V (L, riL) = max{0, riL − cL}

and therefore the patent is renewed if riL > r∗L = cL.

At year L− 1, the value is defined recursively:

V (L, riL−1) = max

{
0, riL−1 − cL−1 + β

∫ ∞
r∗L

V (L, riL)f (riL|riL−1, L− 1)driL

}

This value function is strictly increasing in riL−1 (see proposition 1).
Therefore, there exists a unique threshold such that the patent is
renewed if

riL−1 > r∗L−1 = cL−1 − β
∫ ∞
r∗L

V (L, riL)f (riL|r∗L−1, L− 1)driL
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Optimal stopping problem (continued)

Similarly, for any year t > 0 the value function is defined recursively
as follows:

V (L, rit) = max{0, rit − ct + β

∫ ∞
r∗t+1

V (t + 1, rit+1)f (riL|rit , t)drit+1}

which lead to a series of optimal stopping rules:

rit > r∗t = ct − β
∫ ∞
r∗t+1

V (t + 1, rit+1)f (rit+1|r∗t , t)

Given the function form assumptions on f (r ′|rt , t), the thresholds can
be solved analytically by backward induction.

Note: When the terminal period is stochastic the value function
becomes stationary (i.e. infinite horizon). For instance, optimal
stopping problems arise when studying retirement or exit decisions:

V (st) = max

{
0, π(st) + β

∫
(1− δ(st))V (st+1)f (st+1|st)dst+1

}
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Estimation Method
Likelihood of the observed renewal sequence Nm conditional on the
regulation environment Zm = {Lm, fm, cm} in country m:

L(Nm|Zm, θ) = max
θ

L∑
t=1

nm(t) ln Pr(t∗ = t|Zm, θ)

Where,

Pr(t∗ = t|θ,Zm) =

∫ ∞
−∞

∫ ∞
r∗1

∫ ∞
r∗2

...

∫ r∗t

0

dF (ri1, .., rit−1, rit)dF0(ri0)

Monte Carlo integration approximation:
0. Sample r si0 ∼ LN(µ0, σ

2
0)

1. Period 1:
1 Sample τ s1 from Bernoulli with probability exp(−λr s0 )
2 If τ s1 = 1, sample ξs1 from exponential distribution. Otherwise, do not

renew patent: as1 = 0.
3 Calculate r 1

1

4 Evaluate decision: as1 = 1 if r s1 > r∗1 .

...
t. Repeat sampling for period t if patent was renewed at t − 1
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Estimation Method (continued)

After collecting the simulated sequences of actions, we can evaluate
the simulated choice-probability at period t:

P̃S(t|θ,Zm) =
1

S

∑
s

1(as1 = 1, as2 = 1, ..., ast−1 = 1, ast = 0)

Numerical problem: P̃S(t|θ,Zm) is not a smooth function of the
parameters θ + equal to zero for some t unless S →∞.

Smooth alternative approximation:

P̂S(t, θ,Zm) =
exp

(
P̃S(t|θ,Zm)/η

)
1 +

∑
t′ exp(P̃S(t ′|θ,Zm)/η)

Note: All the structural parameters are identified in this model
(except β). The implicit normalization is that coefficient on renewal
cost ct is one: all the parameters are expressed in dollar.
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Summary of the Results

Main differences across countries: (i) patent regulation rules, (ii)
initial distribution of patent returns.

Germany has a more selective screening system for granting new
patents: higher mean and smaller variance of initial returns ri0.

Learning about complementary innovations: φ ≈ 0.5. Imply very fast
learning/growth in returns.

This has important policy implications: Regulator wants to keep
initial renewing cost low, and increase them fast to extract rents from
high value patents (low distortions after learning is over).
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The distribution of realized patent value is highly skewed

Implied rate of returns on R&R: France = 15.56%, UK = 111.03%,
Germany = 13.83%.
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Sequential estimators of DDC models

Key references:
I Hotz and Miller (1993)
I Hotz, Miller, Sanders, and Smith (1994)
I Aguirregabiria and Mira (2002)
I Identification: Magnac and Thesmar (2002), Kasahara and Shimotsu

(2009)

Consider the following dynamic discrete choice model with additively
separable (AS) and conditional independent (CI) errors.

I A discrete actions.
I Payoff function: u(x |a)
I State space: (x , ε).
I Where x is a discrete state vector, and ε is an A-dimensions continuous

vector.
I Distribution functions:

F Pr(xt+1 = x ′|xt , a) = f (x ′|x , a)
F g(ε) is a type-1 EV density with unit variance.
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Bellman Operator

Bellman equation:

V (x) =

∫
max
a∈A

{
u(x |a) + ε(a) + β

∑
x ′

V (x ′)f (x ′|x , a)
}
g(ε)dε

=

∫
max
a∈A

{
v(x |a) + ε(a)

}
g(ε)dε

= ln

(∑
a

exp(v(x |a))

)
+ γ

= Γ
(
V (x)

)
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CCP Operator

Express V (x) as a function of P(a|x).

V (x) =
∑
a

P(a|x) ∗
{
u(x |a) + E (ε(a)|x , a) + β

∑
x ′

V (x ′)f (x ′|x , a)
}

Where,

E (ε(a)|x , a)

=
1

P(a|x)

∫
1
(
v(x |a) + ε(a) > v(x |a′) + ε(a′), a′ 6= a

)
g(ε)dε

e(a,P(a|x)) = γ − lnP(a|x)
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CCP Operator (continued)

In Matrix form:

V =
∑
a

P(a) ∗
[
u(a) + e(a,P) + βF (a)V

]
[
I − β

∑
a

P(a) ∗ F (a)
]
V =

∑
a

P(a) ∗
[
u(a) + e(a,P)

]
V (P) =

[
I − β

∑
a

P(a) ∗ F (a)
]−1
[∑

a

P(a) ∗
(
u(a) + e(a,P)

)]
where F (a) is |X | × |X | and V is |X | × 1.

The CCP contraction mapping is:

P(a|x) = Pr
(
v(x |a,P) + ε(a) > v(x |a′,P) + ε(a′), a′ 6= a

)
=

exp
(
ṽ(x |a,P)

)
1 +

∑
a′>1 exp

(
ṽ(x |a,P)

)
= Ψ(a|x ,P)

where ṽ(x |a,P) = v(x |a,P)− v(x |1,P).
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CCP Operator (continued)

In Matrix form:

V =
∑
a

P(a) ∗
[
u(a) + e(a,P) + βF (a)V

]
[
I − β

∑
a

P(a) ∗ F (a)
]
V =

∑
a

P(a) ∗
[
u(a) + e(a,P)

]
V (P) =

[
I − β

∑
a

P(a) ∗ F (a)
]−1
[∑

a

P(a) ∗
(
u(a) + e(a,P)

)]
where F (a) is |X | × |X | and V is |X | × 1.

The CCP contraction mapping is:

P(a|x) = Pr
(
v(x |a,P) + ε(a) > v(x |a′,P) + ε(a′), a′ 6= a

)
=

exp
(
ṽ(x |a,P)

)
1 +

∑
a′>1 exp

(
ṽ(x |a,P)

)
= Ψ(a|x ,P)

where ṽ(x |a,P) = v(x |a,P)− v(x |1,P).
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Two Special Cases
1 Linear payoff: If u(x |a, θ) = xθ, the value function is also linear in θ.

V (P) = Z (P)θ + λ(P)

Where Z (P) =
[
I − β

∑
a

P(a) ∗ F (a)
]−1
[∑

a

P(a) ∗ X
]

λ(P) =
[
I − β

∑
a

P(a) ∗ F (a)
]−1
[∑

a

P(a) ∗ e(a,P)
]

2 Absorbing state: v(x |0) = 0 (e.g. Exit or retirement). This change
the value function:

V (x , ε) = max

u(x) + ε(1) + β
∑
x′

Eε′ [V (x ′, ε′)]︸ ︷︷ ︸
=V̄ (x′)

F (x ′|x), ε(0)


As before, the expected continuation value is:

V̄ (x) = log

(
exp(0) + exp

(
u(x) + β

∑
x′

V̄ (x ′)F (x ′|x)

))
+ γ

= log (1 + exp(v(x))) + γ
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Two Special Cases
1 Linear payoff: If u(x |a, θ) = xθ, the value function is also linear in θ.

V (P) = Z (P)θ + λ(P)

Where Z (P) =
[
I − β

∑
a

P(a) ∗ F (a)
]−1
[∑

a

P(a) ∗ X
]

λ(P) =
[
I − β

∑
a

P(a) ∗ F (a)
]−1
[∑

a

P(a) ∗ e(a,P)
]

2 Absorbing state: v(x |0) = 0 (e.g. Exit or retirement). This change
the value function:

V (x , ε) = max

u(x) + ε(1) + β
∑
x′

Eε′ [V (x ′, ε′)]︸ ︷︷ ︸
=V̄ (x′)

F (x ′|x), ε(0)


As before, the expected continuation value is:

V̄ (x) = log

(
exp(0) + exp

(
u(x) + β

∑
x′

V̄ (x ′)F (x ′|x)

))
+ γ

= log (1 + exp(v(x))) + γ

Estimation of dynamic discrete choice models 39 / 49



Two Special Cases (continued)

The choice probability is given by:

Pr(a = 1|x) = P(x) =
exp(v(x))

1 + exp(v(x))

Note that the log of the “odds-ratio” is equal to the choice-specific
value function:

log

(
P(x)

1− P(x)

)
= v(x)

Therefore, the expected continuation value can be expressed as a
function of P(x):

V̄ p(x) = log (1 + exp(v(x))) + γ = log

(
1 +

P(s)

1− P(x)

)
+ γ

= − log (1− P(x)) + γ

Implication: With an absorbing state, we don’t need to invert[
I − β

∑
a P(a) ∗ F (a)

]
to apply the CCP mapping.
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Two-Step Estimator

The objective is to estimate the structural parameters θ without
repeatedly solving the DP problem

Initial step: Reduced form of the model
I Markov transition process: f̂ (x ′|x , a)
I Policy function: P̂(a|x)
I Constraint: Need to estimate both functions at EVERY state point x .

How? Ideally P̂(a|x) is estimated non-parametrically to avoid
imposing a particular functional form on the policy function (i.e. no
theory involved at this stage). This would correspond to a frequency
estimator:

P̂(a|x) =
1

n(x)

∑
i∈n(x)

1(ai = a)

For finite samples, we need to impose smooth the policy function and
interpolate between states are not visited (or infrequently). Kernels or
local-polynomial techniques can be used.

Second-step: Structural parameters conditional on (P̂, f̂ )
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Example: Linear payoff function, u(x |a, θ) = x(a)θ

1- Data Preparation: Use (P̂, F̂ ) to calculate:

Z(P̂, F̂ ) =
[
I − β

∑
a

P̂(a) ∗ F̂ (a)
]−1
[∑

a

P̂(a) ∗ X (a)
]

λ(P̂, F̂ ) =
[
I − β

∑
a

P̂(a) ∗ F (a)
]−1
[∑

a

P̂(a) ∗ e(a, P̂)
]

2- GMM: Let Wit denote a vector of predetermined instruments (e.g.
state-variables and their interactions). We can construct moment conditions:

E
(
Wit

[
ait −Ψ(ait |xit , P̂, F̂ )

])
= 0

Where, Ψ(ait |xit , P̂, F̂ ) =
exp

(
v(xit |ait , P̂, F̂ )

)
∑

a′ exp(v(xit |a′, P̂, F̂ ))

v(x |a, P̂, F̂ ) = x(a)θ + β
∑
x′

V (x |P̂, F̂ )︸ ︷︷ ︸
=Z(x,P̂,F̂ )θ+λ(x,P̂,F̂ )

f̂ (x ′|x , a).

v(x |a, P̂, F̂ ) =
(
x(a) + βZ̄(x |P̂, F̂ )

)
θ + βλ̄(x |P̂, F̂ )

Therefore, the second-stage of problem is equivalent to a linear GMM (note:
This also highlights the difficulty of identifying β separately from θ)
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Pseudo-likelihood estimators (PML)

Source: Aguirregabiria and Mira (2002)

Data: Panel of n individuals of T periods:

(A,X ) = {ait , xit}i=1,...,n;t=1,...,T

2-Step estimator:
1 Obtain a flexible estimator of CCPs P̂1(a|x)
2 Feasible PML estimator:

Q2S(A,X ) = max
θ

∑
t

∑
i

Ψ(ait |xit , P̂1, F̂ , θ)

If V (P) is linear, the second step is a linear probit/logit model.
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Pseudo-likelihood estimators (PML)

NPL estimator: The NPL repeat the PML and policy function
iteration steps sequentially (i.e. swapping the fixed-point algorithm).

1 Obtain a flexible estimator of CCPs P̂1(a|x)
2 Feasible PML step:

Qk+1(A,X ) = max
θ

∑
t

∑
i

Ψ(ait |xit , P̂k , F̂ , θ)

3 Policy function iteration step:

P̂k+1(a|x) = Ψ(a|x , P̂k , F̂ , θ̂k+1)

4 Stop if ||P̂k+1 − P̂k || < η, else repeat step 2 and 3.

In the single agent case: The NPL is guaranteed to converge to the
MLE estimator (i.e. NFXP).

In practice, Aguirregabiria and Mira (2002) showed that 2 or 3 steps
is sufficient to eliminate the small sample bias of the 2-step estimator,
and is computationally easier to implement than the NFXP.
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Simulation-based CCP estimator
Source: Hotz, Miller, Sanders, and Smith (1994)

Starting point: The H&M GMM estimator suffers from a curse of
dimensionality in |X |, since we must invert a |X | × |X | matrix to
evaluate the continuation value (not true for optimal-stopping
models). This is less severe for NFXP estimators, since we can use
the value-function mapping to solve the policy functions.

Solution:
I First insight: We only need to know the relative choice-specific value

function ṽ(a|x) = v(a|x)− v(1|x) to predict behavior.

ait =

{
1 If ṽ(a|x) + ε̃(a) < 0 for all a 6= 1

a If max{0, ṽ(a′|x) + ε̃(a′)} < ṽ(a|x) + ε̃(a) for all a′ 6= a

I Second insight: There exists a one-to-one mapping between ṽ(a|x) and
P(a|x).
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Simulation-based CCP estimator

Logit example:

P(a|x) =
exp(v(a|x))∑
a′ exp(v(a′|x))

=
exp(ṽ(a|x))

1 +
∑

a′>1 exp(ṽ(a′|x))

⇔ ṽ(a|x ,P) = lnP(a|x)− lnP(1|x)

Third insight: We can approximate the model’s predicted value
function at any state x by simulating actions according to a policy
function P(a|x).

V̂ S(x |P) =
1

S

∑
s

T∑
τ=0

βτ
{
u(x st+τ , a

s
t+τ ) + e(ast+τ |P(ast+τ |x st+τ ))

}
where (x s , as) is a simulated sequence of choices and states sampled
from P(a|x) and f (x ′|x , a), and e(a|P(a|x)) = E (ε(a)|ai = a, x ,P)
[closed-form expression]. Importantly, limS→∞ V̂ S(x |P) = V (s|P).
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Estimation Procedure

Step 1: Estimate P̂(a|x) and f̂ (x ′|x , a), and compute the
“dependent variable”:

ṽn(ait |xit , P̂) = ln P̂(ait |xit)− ln P̂(1|xit)

Step 2a: Simulation of value functions of each observed state and
choice (xit , ait). Each simulated sequence calculate the value of
“future” choices:

1 Calculate static value of (xit , ait): u(xit , ait |θ) + e(ait |P̂, xit)
2 Sample new state for period t + 1: xit+1 ∼ f̂ (x ′|xit , ait)
3 Sample new choice for period t + 1: ait+1 ∼ P̂(a|xit)

Repeat steps 1-3 for T periods. This gives us the net present value of
one simulated sequence:

v s(ait |xit , P̂, θ) = u(xit , ait |θ) + e(ait |P̂, xit+τ )

+
T∑
τ=1

βτ
[
u(x sit+τ , a

s
it+τ |θ) + e(asit+τ |P̂, x sit+τ )

]
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Estimation Procedure (continued)

Repeat this process S times.

This gives us the simulated value of choosing ait in state xit :

vS(ait |xit , P̂, θ) =
1

S

∑
s

v s(ait |xit , P̂)

Let ṽS(ait |xit , P̂, θ) = vS(ait |xit , P̂, θ)− vS(1|xit , P̂, θ).

Note: If u(x , a|θ) is linear in θ, we need to do this simulation
process only once.

Step 2b: Moment conditions

E
(
Wit

[
ṽn(ait |xit , P̂)− ṽS(ait |xit , P̂, θ)

])
= 0

where Wit is a vector of instruments.
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Estimation Procedure (continued)

Importantly, setting up the moment conditions this way implies that
the estimate will be consistent even with a finite number of simulated
number of draws S .

Why? The simulation error, ṽ(ait |xit , P̂, θ)− ṽS(ait |xit , P̂, θ), is
additive, and therefore vanishes as n→∞ (instead of S →∞).

However, the small sample bias in P̂ enters non-linearly in the
moment conditions, and can induce severe biases (same as before):

ln
(
P̂(ait |xit) + uit(a)

)
−ln

(
P̂(1|xit) + uit(1)

)
6= ln P̂(ait |xit)−ln P̂(1|xit)+uit

For instance, if P̂(ait |xit) = 0, the objective function is not defined.

HMSS presents Monte-Carlo experiment to illustrate the small-sample
bias. It can be quite large.
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